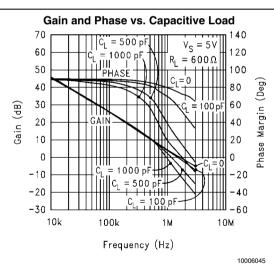


LMV321/LMV358/LMV324 Single/Dual/Quad General Purpose, Low Voltage, Rail-to-Rail Output **Operational Amplifiers**

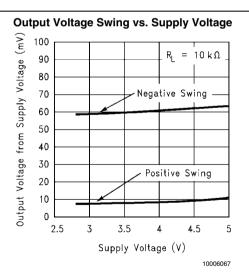

General Description

The LMV358/LMV324 are low voltage (2.7-5.5V) versions of the dual and guad commodity op amps, LM358/LMV324, which currently operate at 5-30V. The LMV321 is the single version

The LMV321/LMV358/LMV324 are the most cost effective solutions for the applications where low voltage operation. space saving and low price are needed. They offer specifications that meet or exceed the familiar LM358/LMV324. The LMV321/LMV358/LMV324 have rail-to-rail output swing capability and the input common-mode voltage range includes ground. They all exhibit excellent speed to power ratio, achieving 1 MHz of bandwidth and 1 V/µs of slew rate with low supply current.

The LMV321 is available in the space saving 5-Pin SC70, which is approximately half the size of the 5-Pin SOT23. The small package saves space on PC boards, and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.

The chips are built with National's advanced submicron silicon-gate BiCMOS process. The LMV321/LMV358/LMV324 have bipolar input and output stages for improved noise performance and higher output current drive.


Features

(For V⁺ = 5V and V⁻ = 0V, unless otherwise specified)

- Guaranteed 2.7V and 5V performance
- -No crossover distortion
- -40°C to +85°C Industrial temperature range
- 1 MHz Gain-bandwidth product Low supply current — LMV321 130 µA ___ LMV358 210 µA _ I MV324 410 µA Rail-to-rail output swing @ 10 kΩ V+ -10 mV V- +65 mV V_{CM}
 - -0.2V to V+-0.8V

Applications

- Active filters
- General purpose low voltage applications
- General purpose portable devices

Operational Amplifiers MV321/LMV358/LMV324 Single/Dual/Quad General Purpose, Low Voltage, Rail-to-Rail Output

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Human Body Model	
LMV358/LMV324	2000V
LMV321	900V
Machine Model	100V
Differential Input Voltage	±Supply Voltage
Supply Voltage (V+-V -)	5.5V
Output Short Circuit to V +	(Note 3)
Output Short Circuit to V -	(Note 4)
Soldering Information	
Infrared or Convection (20 sec)	235°C

Storage Temp. Range-65°C to 150°CJunction Temperature (Note 5)150°C

Operating Ratings (Note 1)

Supply Voltage	2.7V to 5.5V
Temperature Range (Note 5) LMV321/LMV358/LMV324	–40°C to +85°C
Thermal Resistance (θ_{JA}) (Note 10)	
5-pin SC70	478°C/W
5-pin SOT23	265°C/W
8-Pin SOIC	190°C/W
8-Pin MSOP	235°C/W
14-Pin SOIC	145°C/W
14-Pin TSSOP	155°C/W

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V⁺ = 2.7V, V⁻ = 0V, V_{CM} = 1.0V, V_O = V⁺/2 and R_L > 1 M Ω .

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
V _{OS}	Input Offset Voltage		(*******)	1.7	7	mV
TCV _{OS}	Input Offset Voltage Average Drift			5		µV/°C
I _B	Input Bias Current			11	250	nA
I _{OS}	Input Offset Current			5	50	nA
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 1.7V$	50	63		dB
PSRR	Power Supply Rejection Ratio	$2.7V \le V^+ \le 5V$ $V_0 = 1V$	50	60		dB
V _{CM}	Input Common-Mode Voltage Range	For CMRR ≥ 50 dB	0	-0.2 1.9	1.7	V V
Vo	Output Swing	$R_{\rm I} = 10 \ k\Omega$ to 1.35V	V+ -100	V+ –10		mV
		-		60	180	mV
I _S	Supply Current	LMV321		80	170	μA
		LMV358 Both amplifiers		140	340	μA
		LMV324 All four amplifiers		260	680	μA

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T $_{\rm J}$ = 25°C, V⁺ = 2.7V, V⁻ = 0V, V_{CM} = 1.0V, V_O = V⁺/2 and R_L > 1 MΩ.

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
GBWP	Gain-Bandwidth Product	C _L = 200 pF		1		MHz
Φ _m	Phase Margin			60		Deg
G _m	Gain Margin			10		dB
e _n	Input-Referred Voltage Noise	f = 1 kHz		46		_nV 1∕Hz
i _n	Input-Referred Current Noise	f = 1 kHz		0.17		<u>pA</u> 1√Hz

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
V _{OS}	Input Offset Voltage			1.7	7 9	mV
TCV _{OS}	Input Offset Voltage Average Drift			5		µV/°C
B	Input Bias Current			15	250 500	nA
I _{os}	Input Offset Current			5	50 150	nA
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 4V$	50	65		dB
PSRR	Power Supply Rejection Ratio	$2.7V \le V^+ \le 5V$ $V_O = 1V, V_{CM} = 1V$	50	60		dB
V _{CM}	Input Common-Mode Voltage	For CMRR ≥ 50 dB	0	-0.2		V
	Range			4.2	4	V
A _V	Large Signal Voltage Gain (Note 8)	$R_L = 2 k\Omega$	15 10	100		V/mV
	Output Swing	$R_L = 2 k\Omega$ to 2.5V	V+ -300 V+ -400	V+ -40		mV
				120	300 400	mV
		$R_L = 10 \text{ k}\Omega \text{ to } 2.5 \text{V}$	V+ -100 V+ -200	V+ –10		mV
				65	180 280	mV
I _o	Output Short Circuit Current	Sourcing, V _O = 0V	5	60		mA
		Sinking, V _O = 5V	10	160		IIIA
I _S	Supply Current	LMV321		130	250 350	μA
		LMV358 Both amplifiers		210	440 615	μA
		LMV324 All four amplifiers		410	830 1160	μA

5V DC Electrical Characteristics

.... ~=~~ **١**/ - V V ~~ / **١**/ ~ ~ 11.10

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V⁺ = 5V, V⁻ = 0V, V_{CM} = 2.0V, V_O = V⁺/2 and R_L > 1 M\Omega. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
SR	Slew Rate	(Note 9)		1		V/µs
GBWP	Gain-Bandwidth Product	C _L = 200 pF		1		MHz
Φ _m	Phase Margin			60		Deg
G _m	Gain Margin			10		dB
e _n	Input-Referred Voltage Noise	f = 1 kHz		39		<u>nV</u> √Hz
i _n	Input-Referred Current Noise	f = 1 kHz		0.21		<u>pA</u> √Hz

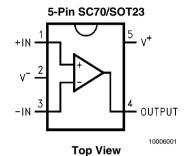
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC

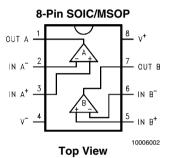
Note 3: Shorting output to V+ will adversely affect reliability.

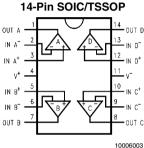
Note 4: Shorting output to V- will adversely affect reliability.

Note 5: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

Note 6: Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

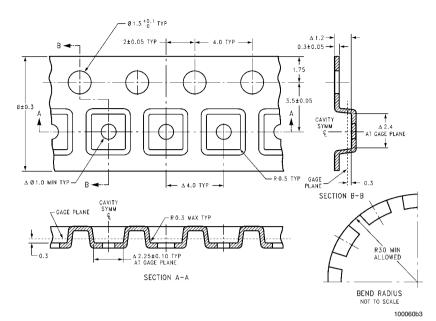

Note 7: All limits are guaranteed by testing or statistical analysis.


Note 8: R_1 is connected to V⁻. The output voltage is $0.5V \le V_0 \le 4.5V$.


Note 9: Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates.

Note 10: All numbers are typical, and apply for packages soldered directly onto a PC board in still air.

Connection Diagrams

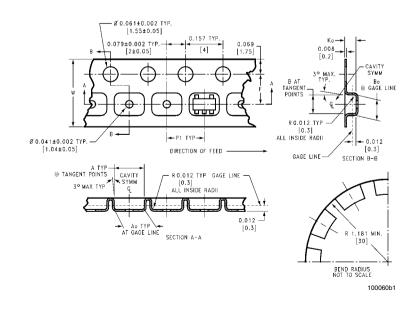


Top View

Ordering Information

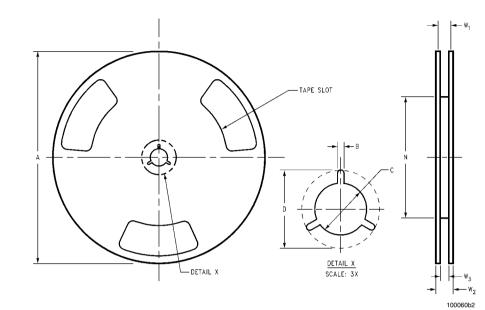
	Temperature Range				
Package	Industrial	Packaging Marking	Transport Media	NSC Drawing	
	–40°C to +85°C				
5-Pin SC70	LMV321M7	A12	1k Units Tape and Reel	MAA05A	
5-PIII 3070	LMV321M7X	AI2	3k Units Tape and Reel	IVIAAUSA	
5-Pin SOT23	LMV321M5	A13	1k Units Tape and Reel	MF05A	
5-FIII 50125	LMV321M5X	AIS	3k Units Tape and Reel		
8-Pin SOIC	LMV358M	LMV358M	Rails	M08A	
0-111 3010	LMV358MX		2.5k Units Tape and Reel		
8-Pin MSOP	LMV358MM	LMV358	1k Units Tape and Reel	MUA08A	
0-PIII WISOP	LMV358MMX		3.5k Units Tape and Reel	MUAU6A	
	LMV324M	LMV324M	Rails	N114A	
14-Pin SOIC	LMV324MX		2.5k Units Tape and Reel	M14A	
14-Pin TSSOP	LMV324MT	LMV324MT	Rails	MTC14	
14-FIII 1330P	LMV324MTX		2.5k Units Tape and Reel	MTC14	

SC70-5 Tape and Reel Specification

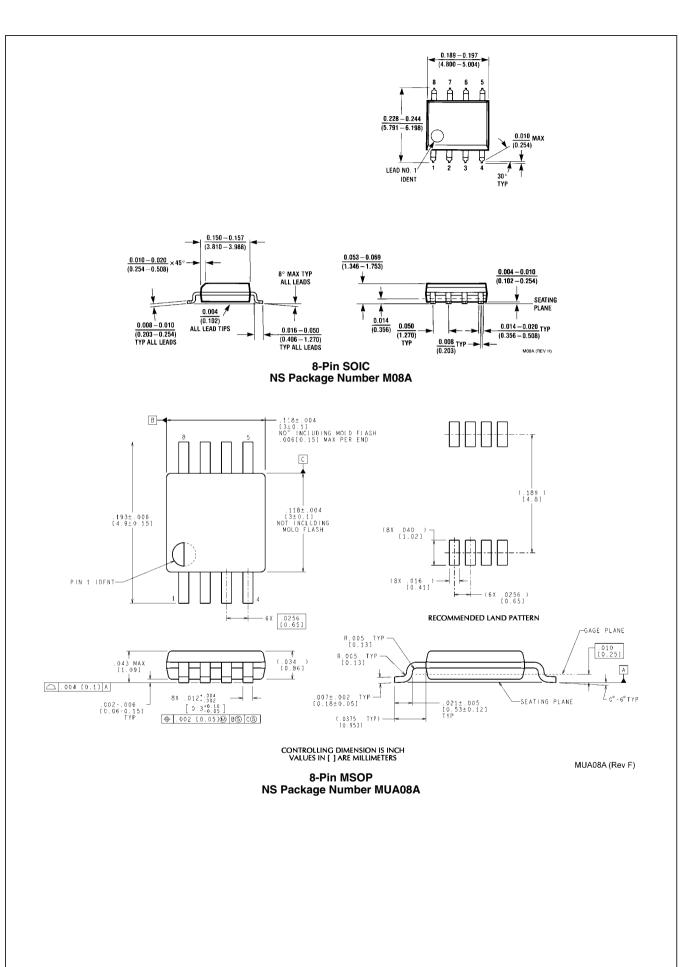


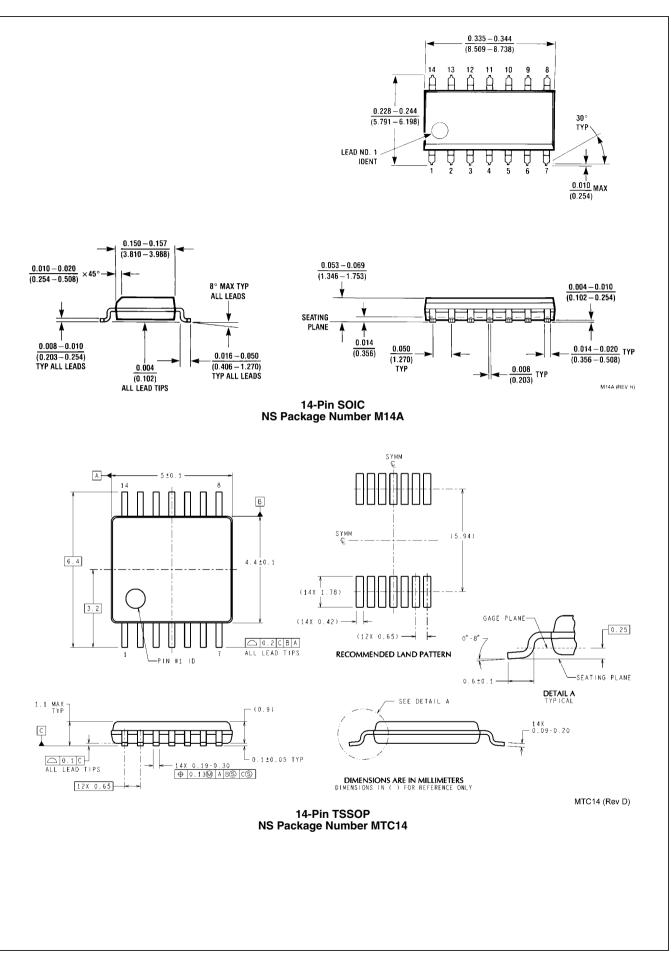
SOT-23-5 Tape and Reel Specification

TAPE FORMAT


Tape Section	# Cavities	Cavity Status	Cover Tape Status
Leader	0 (min)	Empty	Sealed
(Start End)	75 (min)	Empty	Sealed
Carrier	3000	Filled	Sealed
	250	Filled	Sealed
Trailer	125 (min)	Empty	Sealed
(Hub End)	0 (min)	Empty	Sealed

TAPE DIMENSIONS


8 mm	0.130	0.124	0.130	0.126	0.138 ±0.002	0.055 ±0.004	0.157	0.315 ±0.012
	(3.3)	(3.15)	(3.3)	(3.2)	(3.5 ±0.05)	(1.4 ±0.11)	(4)	(8 ±0.3)
Tape Size	DIM A	DIM Ao	DIM B	DIM Bo	DIM F	DIM Ko	DIM P1	DIM W


REEL DIMENSIONS

8 mm	7.00	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1+ 0.078/-0.039
	330.00	1.50	13.00	20.20	55.00	8.40 + 1.50/-0.00	14.40	W1 + 2.00/-1.00
Tape Size	A	В	С	D	Ν	W1	W2	W3

